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Abstract

Surveys of restored oyster reefs need to produce accurate population estimates to assess

the efficacy of restoration. Due to the complex structure of subtidal oyster reefs, one effec-

tive and efficient means to sample is by patent tongs, rather than SCUBA, dredges, or bot-

tom cores. Restored reefs vary in relief and oyster density, either of which could affect

survey efficiency. This study is the first to evaluate gear (the first full grab) and survey (which

includes selecting a specific half portion of the first grab for further processing) efficiencies

of hand-operated patent tongs as a function of reef height and oyster density on subtidal res-

toration reefs. In the Great Wicomico River, a tributary of lower Chesapeake Bay, restored

reefs of high- and low-relief (25–45 cm, and 8–12 cm, respectively) were constructed

throughout the river as the first large-scale oyster sanctuary reef restoration effort (sanctu-

ary acreage > 20 ha at one site) in Chesapeake Bay. We designed a metal frame to guide a

non-hydraulic mechanical patent tong repeatedly into the same plot on a restored reef until

all oysters within the grab area were captured. Full capture was verified by an underwater

remotely-operated vehicle. Samples (n = 19) were taken on nine different reefs, including

five low- (n = 8) and four high-relief reefs (n = 11), over a two-year period. The gear effi-

ciency of the patent tong was estimated to be 76% (± 5% standard error), whereas survey

efficiency increased to 81% (± 10%) due to processing. Neither efficiency differed signifi-

cantly between young-of-the-year oysters (spat) and adults, high- and low-relief reefs, or

years. As this type of patent tong is a common and cost-effective tool to evaluate oyster res-

toration projects as well as population density on fished habitat, knowing the gear and sur-

vey efficiencies allows for accurate and precise population estimates.

Introduction

To manage the oyster fishery effectively or monitor the performance of oyster populations on

subtidal sanctuary reefs, accurate and precise population data, as well as data on the status of

the shell or other materials the reef is constructed of are needed, taken by reliable gear with
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sufficient samples to control for variation over the reefs [1, 2]. Of the available methods to sur-

vey subtidal oyster populations, an effective one is SCUBA [3–6] when divers bring the sample

to the surface, where it is processed on the vessel or in a laboratory. However, the cost to obtain

statistically sufficient numbers of samples, usually 20 or more per reef can be prohibitively

expensive. Non-destructive means of surveying oyster habitat include towed underwater video

[5] and remotely-operated vehicle (ROV) video [7], as well as visual inspection by divers.

Visual methods can provide information on the general condition of oyster habitat, but the

means to accurately estimate oyster demographics from video have not been fully developed.

Another effective method to physically sample subtidal oyster populations and habitat effi-

ciently is to adapt oyster fishing gear to this purpose [7–9].

The two main choices in gear type are dredge and tong. These two gears are the preferred

methods to harvest oysters in the commercial fishery, and have been designed to gather oysters

efficiently from their reef habitat. Both dredges and tongs were used in some of the earliest sur-

veys in Chesapeake Bay [10, 11], with tongs being used in shallow water and dredges in deeper

waters. Estimates derived from dredges are not accurate due to problems relating to the effi-

ciency of the device [10]. Since these early efforts, more recent studies [3, 12–15] have noted

that dredge efficiency is low, highly variable and generally unreliable, though in some cases a

dredge may be calibrated to provide a relative measure of population status [14].

There are two types of patent tongs, hydraulic and mechanical. Hydraulic tongs (Fig 1) are

closed using hydraulic power, and are heavier than mechanically-operated tongs (Fig 2).

Mechanical tongs are held open by a spring-loaded device, which is triggered and releases when

the tong hits the bottom. The tong then closes as it is retrieved. When compared to divers,

hydraulic patent tongs are assumed to be similar in efficiency to SCUBA divers, which are

thought to be 100% efficient [3], but this has not been tested. Divers use digging implements

and collect all oysters, live and dead, as well as all shell material down to 10 cm depth from a

sample area. Similarly, a hydraulic patent tong collects samples down to 10 cm in depth.

Hydraulic patent tongs require a larger vessel with specialized equipment. Instead, monitoring

programs often use either the more commonly available dredges or mechanically-operated pat-

ent tongs whose efficiency has never been quantified. During a survey, only a single grab of the

tong per sample site is taken, so it is important to determine the efficiency rate of this grab vs

the total number of oysters present within the grab area, as we do not expect the tong to capture

all oysters within a grab area on the first grab. This is the efficiency of the gear; when a sub-sam-

ple of this first grab is taken and processed, we consider this “survey efficiency.”

We used mechanically-operated patent tongs to survey an oyster population on a series of

restored reefs in the Great Wicomico River (GWR), Chesapeake Bay, USA (Fig 3). These reefs

were built in 2004 at varying heights on the bottom and separated into two categories, high

relief (� 25 cm) and low relief (8–12 cm), and were the world’s largest oyster reef restoration

project at the time. They were built out of shells dredged from formerly-productive oyster

reefs now denuded of surface shell and covered by sediment. All reefs were built as sanctuaries

and relied on natural recruitment to establish an oyster population on the reefs, which

occurred (Schulte et al. 2009). Due to the world-wide [16], as well as Chesapeake Bay wide [17,

18] depletion of oysters and destruction of their habitat, oyster restoration efforts are expand-

ing to restore this ecosystem engineer, which provides a wealth of ecological services [19, 20].

Due to significant and ongoing financial commitments in the Chesapeake Bay region towards

oyster restoration, a goal implementation team (GIT) was formed in the Bay region, consisting

of a mix of state and federal fishery managers, scientists, and those agencies (NOAA and the

US Army Corps of Engineers) involved in construction and monitoring of restored oyster

reefs. As it had been noted in the Chesapeake Bay scientific community that there is a lack of

good monitoring data regarding oyster restoration efforts [21], we were keenly interested in
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sampling the GWR restoration project accurately and precisely such that results could be com-

pared and contrasted with other restoration efforts as well as to evaluate the success of the

reefs. We sampled in the winters of 2007–2008 and 2008–2009 using a device considered to

produce very accurate results, a mechanically-operated patent tong with a measured area per

grab of 1.03 m2. Tong size can vary, small tongs ranging from 0.1–0.25 m2 being used on

smaller boats, which can access shallower reefs than those in the present study. The mechani-

cally-operated patent tong relies on the weight of the device to penetrate the oyster reef and

mechanical action to retrieve the sample. This is similar to the action of bottom samplers such

as a PONAR grab, and its gear efficiency may be different from either SCUBA divers or the

hydraulic patent tong.

Fig 1. Photograph of a hydraulic patent tong.

https://doi.org/10.1371/journal.pone.0196725.g001

Survey efficiency of oyster patent tongs

PLOS ONE | https://doi.org/10.1371/journal.pone.0196725 May 2, 2018 3 / 15

https://doi.org/10.1371/journal.pone.0196725.g001
https://doi.org/10.1371/journal.pone.0196725


Fig 2. Photograph of a mechanically-operated patent tong.

https://doi.org/10.1371/journal.pone.0196725.g002
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While conducting the survey in winter 2007–2008, our patent tong samples were typically

full, indicative of obtaining a complete sample. Additionally, there was a thin layer of whitish

grey shells at the bottom of the sample, which were the original dredged shells used to con-

struct the reef base of the sanctuary reefs, and were easily distinguishable from live oysters and

newly-formed shell after reef construction. The dredged shells had been buried in anoxic sedi-

ments for several hundred years prior to their dredging and are distinct in physical appear-

ance, as well as structurally, from new oyster shells [22], which are typically brown in color,

longer and thinner.

When sampling reefs in the following year (winter 2008–2009), the patent tong did not

appear to obtain a full sample consistently. Many samples, particularly those from high-relief

reefs, were only partially full and the original dredged shell was absent from the bottom of the

sample, suggesting that some of the live oysters were not collected. ROV video examination of

sampled sites indicated that live oysters were being left behind within the sample site foot-

prints. The reefs, especially the high-relief ones, appeared to have accreted substantial reef

material, which could preclude the collection of complete samples with the patent tong within

a single grab. Such was the case in the late 1800s, when Winslow (1882) sampled oyster reefs in

Fig 3. Great Wicomico River and restored oyster sanctuary reefs. From Schulte et al. 2009.

https://doi.org/10.1371/journal.pone.0196725.g003
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Tangier Sound and Pocomoke Sound in the middle reaches of Chesapeake Bay. Winslow

(1882) stated that obtaining accurate samples was much more difficult on high-density, cohe-

sive, unfished beds compared to oyster beds that had been subject to dredging and tonging,

due to the cohesiveness and much higher volume of oysters. Unfortunately, none of the earlier

studies of oyster survey gear efficiency quantified the effect of reef characteristics on sampling

efficiency [3, 10, 12–14]. Consequently, we aimed to assess the efficiency of mechanically-oper-

ated patent tongs in sampling subtidal oyster reefs constructed of shells, and determine if reef

characteristics affected sampling efficiency.

We hypothesized that (1) hand-operated patent tong gear will be less than 100% efficient in

sampling any oyster reef, (2) the patent tong will be more efficient in sampling low-relief reefs

compared to high-relief reefs due to the cohesiveness of high-relief reefs, (3) the patent tong

will sample adults more efficiently than young-of-the-year (YOY) oysters (= spat) due to the

small size of the spat, and (4) processing of a sample will improve the sampling efficiency, due

to subsampling selection, leading to a significantly greater survey efficiency than gear effi-

ciency. Subsampling selection consisted of selecting the middle half of a grab, where a metal

bar provides for a deeper grab for the middle half, while the two ends, which do not have as

much weight to grab with, do not grab as deeply. We believe this will result in a higher effi-

ciency rate for the middle half of the tong compared to either end.

Methods

Gear efficiency q (= catchability) relates the number (or biomass) of individuals caught in a

sample (C) to the true number of individuals (N):

N ¼
C

q � E

where E = effort. In our survey we assume E = 1 because we are interested in estimating the

efficiency of a 1-m2 sample. Survey efficiency is a product of availability (a), gear efficiency (g),

and processing efficiency (p):

q ¼ a � p � g

although most surveys assume processing efficiency = 1 and, therefore, do not include it in cal-

culations [23]. We also assume that a = 1 because the oyster reefs were defined by side-scan

sonar mapping, oysters are immobile, and our sampling grids encompassed the whole of each

reef. To estimate gear efficiency, we developed a device consisting of a metal frame designed to

guide the patent tong to repeatedly grab in the same sample area until no live oysters were in

the sample (Fig 4). An ROV was used to verify that there were no more live oysters in the plot,

that the patent tong was placed within the same sampling area for multiple grabs, and that no

additional material from outside the sampled area was captured in the grabs. Fig 4 illustrates

the guide and tong while taking repeated grabs and the appearance of a sampled area denuded

of all live oysters (100% of the sample gathered). Typically, this took 2–3 grabs to achieve. By

the end of the third grab, a hole approximately 10–15 cm deep was evident, denuded of live

oysters with only the original, grey “fossil” shell used to build the reefs, and bottom sediments

were also evident (Fig 5). Gear efficiency was estimated with a series of grabs during winter

surveys of the restored GWR oyster reefs in 2008–09 and 2009–2010. These reefs consisted of a

network of 8 reefs that had both high- and low-relief habitat within the restoration polygon. A

ninth reef, the one immediately to the southwest of the largest restored reef, had been built

using different methods years before, and was not part of our experiment (Fig 3). Both high-

and low-relief reefs were sampled (n = 11 for high, and n = 8 for low) to test our first two

Survey efficiency of oyster patent tongs
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hypotheses. Due to the difficulty of obtaining samples, with a single sample taking approxi-

mately 4 h, we sampled a randomly selected subset of the restoration reefs each year, rather

than from all reefs. Two of the reefs were not sampled during our experiment. As reef type was

considered a stratum (high and low) during prior work [7] we sampled the reefs by stratum in

the present study, which did not require a specific number of samples from each individual

reef. As we were trying to estimate the efficiency of the tong by strata, this is appropriate. Each

reef was divided into a grid of numbered 10 m2 blocks, and a random number generator was

used to select blocks to sample. Significantly more oysters were found on the high-relief strata

(463 ± 47.55 SE, n = 11) than the low-relief strata (211.5 ± 62.21 SE, n = 8). All data, including

the locations of sampling points, are in S1 and S2 Tables.

To estimate survey efficiency, we followed the same methodology used in our surveys. Spe-

cifically, we divided the sample into two halves, one of which we kept for processing while the

Fig 4. ROV images of patent tong and guiding device taking a reef sample.

https://doi.org/10.1371/journal.pone.0196725.g004
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other was returned overboard as close as possible to the original sampling location. For the

processed half, we selected the half over the metal bar in the middle of the patent tong. The

tong’s heavier weight in the middle due to the metal bar provides for a deeper grab compared

to either end, likely improving efficiency. Our unselected half of the sample was the two ends

of the sample where the tong has less weight and a shallower grab. Samples were taken back to

the lab for processing, and the data multiplied by two to produce an estimate per m2, the full

grab area. These estimates were then divided by the total number of oysters in each full grab,

as described above, to generate survey efficiency. As we are hypothesizing that this method

will produce a higher efficiency rate, no bias is introduced into the data relative to our expected

lower efficiency of the gear only. A lower efficiency rate for gear would produce a larger multi-

plier to obtain the total number of oysters, including those missed in the first grab, relative to

the survey efficiency rate. Both efficiencies should thereby produce a similar result, though if

the estimates of gear and survey efficiency differ radically from each other, one method may be

more accurate than the other.

To address our hypotheses regarding the efficiency of the patent tong, we developed statisti-

cal models with various combinations of fixed factors including reef relief (high or low), oyster

size (spat or adults), and year (2008–2009 or 2009–2010), and total oyster density summed

across all grabs in a plot as a covariate (Tables 1 and 2). Spat were� 35 mm shell length

(= shell height) [3, 7], while adults were > 35 mm shell length. Generalized linear models

(GLM) with a Gaussian distribution (y = β0 + β1x1 +. . .+ βpxp + e) were run separately for gear

Fig 5. ROV images of sample area after 3 grabs, showing grey reef base shell.

https://doi.org/10.1371/journal.pone.0196725.g005

Table 1. Akaike information criterion analysis for the gear efficiency rate. K is the number of estimated parameters in the model; AICc is the second order (due to

small sample size) Akaike’s information criterion value; Δi is the delta AIC, which is the difference between each model and the best model; and wi is the Akaike weight,

which indicates the probability that the model is the best among the candidate models.

Model Variables k AICC Δi wi

g1 Oysters�Relief�Year 9 257.77 28.38 <0.01

g2 Oysters+Relief+Year 5 236.32 6.93 0.019

g3 Oysters+Relief 4 232.56 3.17 0.129

g4 Oysters�Relief 5 236.14 6.75 0.043

g5 Oysters+Year 4 232.63 3.24 0.124

g6 Oysters�Year 5 235.66 6.27 0.056

g7 Oysters 3 229.39 0 0.629

g8 Null 2 256.47 27.08 <0.01

https://doi.org/10.1371/journal.pone.0196725.t001

Survey efficiency of oyster patent tongs
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efficiency and survey efficiency data. Statistical analyses were conducted using R [24] and

RStudio [25] statistical software.

We used an information-theoretic approach [26, 27] to select the best-fitting statistical

model(s) from a set of eight models (g1-g8), including the null model for comparison (Tables 1

and 2). Catch from each sample was modeled as a continuous response. Each model was ana-

lyzed using the bias-corrected Akaike Information Criterion (AICC). Model probabilities (wi)

based on Δi values were used to determine the probability that a particular model was the best-

fitting model. Chi square (X2) tests were used to assess the fit of the best model relative to

other models, including the null model. The two efficiency rates (gear and survey) were com-

pared with a one-tailed, paired t-test to determine if survey efficiency was significantly higher

than gear efficiency.

Results

Catchability of adults and spat did not differ significantly for either the gear (F = 0.290 df = 7,

30, p = 0.953) or survey (F = 1.243, df = 7, 30, p = 0.311) efficiency. Spat and adults were subse-

quently added together and analyzed as total oyster abundance. For gear efficiency, model g7
(oyster abundance only) had the highest wi, 0.629, with the next best fitting models being g5
(wi = 0.124) and g3 (wi = 0.129) (Table 1). Models g5 and g3 were eliminated from further con-

sideration because their parameter estimates were not significant (Table 3). Similarly, for sur-

vey efficiency, model g7 also had the highest wi, 0.661, with the next best fitting models being

g5 (wi = 0.131) and g3 (wi = 0.136) (Table 2). For both efficiency rates, model g7 provided a sig-

nificantly better fit than all other models (X2 test, p< 0.001), and explained a significant frac-

tion of the variance (Fig 6).

For model g7, the gear efficiency rate was estimated at 76% ± 5% (standard error) and the

survey efficiency at 81% ± 10% (Fig 6, Table 3). Survey efficiency was significantly higher than

gear efficiency (one-tailed, t = 1.774, df = 18, p = 0.048).

Discussion

We hypothesized that (1) hand-operated patent tong gear will be less than 100% efficient in

sampling any oyster reef, (2) the patent tong will be more efficient in sampling low-relief reefs

compared to high-relief reefs due to the cohesiveness of high-relief reefs, (3) the patent tong

will sample adults more efficiently than young-of-the-year (YOY) oysters (= spat) due to the

small size of the spat, and (4) processing of a sample will improve the sampling efficiency, due

to subsampling selection, leading to a significantly greater survey efficiency than gear effi-

ciency. Our results support hypotheses 1 and 4; 2 and 3 were rejected. Hypothesis 1 was

Table 2. Akaike information criterion analysis for the survey efficiency rate. K is the number of estimated parameters in the model; AICc is the second order (due to

small sample size) Akaike’s information criterion value; Δi is the delta AIC, which is the difference between each model and the best model; and wi is the Akaike weight,

which indicates the probability that the model is the best among the candidate models.

Model Variables k AICC Δi wi

g1 Oysters�Relief�Year 9 232.33 26.33 <0.01

g2 Oysters+Relief+Year 5 212.91 6.91 0.021

g3 Oysters+Relief 4 209.17 3.17 0.136

g4 Oysters�Relief 5 211.38 5.38 0.022

g5 Oysters+Year 4 209.25 3.25 0.131

g6 Oysters�Year 5 210.85 4.85 0.029

g7 Oysters 3 205.99 0 0.661

g8 Null 2 251.13 45.12 <0.01

https://doi.org/10.1371/journal.pone.0196725.t002
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Table 3. Parameter estimates from best-fitting generalized linear models with Gaussian distribution.

Model Parameter Variable Estimate SE t-value p

Gear
g7 β0 Intercept -12.3725 22.252 -0.556 0.585

Β1 Oysters 0.7593 0.05432 13.977 <0.001

g5 β0 Intercept -11.1070 35.8836 -0.31 0.761

β1 Oysters 0.7574 0.06912 10.959 <0.001

β2 Year -1.2695 27.683 -0.046 0.964

g3 β0 Intercept -19.9889 36.2071 -0.552 0.589

β1 Oysters 0.7714 0.07138 10.806 <0.001

β2 Relief 7.8486 28.9144 0.271 0.79

Survey
g7 β0 Intercept -2.2800 41.1842 -0.055 0.956

β1 Oysters 0.8114 0.1005 8.071 <0.001

g5 β0 Intercept 3.9945 66.3868 0.06 0.953

β1 Oysters 0.8022 0.1279 6.274 <0.001

β2 Year -6.2940 51.2151 -0.123 0.904

g3 β0 Intercept -16.3992 67.0119 -0.245 0.81

β1 Oysters 0.8338 0.1321 6.311 <0.001

β2 Relief 14.5500 53.5147 0.272 0.789

https://doi.org/10.1371/journal.pone.0196725.t003

Fig 6. Survey efficiency (y = -2.280+0.811x, r2 = 0.79) and gear efficiency (y = -12.373+0.759x, r2 = 0.92), which is the first grab

vs. the total number of oysters in a sampling plot caught using multiple grabs.

https://doi.org/10.1371/journal.pone.0196725.g006
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supported because gear efficiency of the mechanically-operated patent tong was 76% (± 5%

standard error) for the first grab, not 100% efficient in capturing all live oysters in a single

grab. In contrast, gear efficiency of hydraulic patent tongs is assumed to be 100% because effi-

ciency of the hydraulic patent tong did not differ significantly from that of SCUBA divers, who

were instructed to excavate all oysters and associated reef material down to 10 cm below the

surface of the reef [3]. Unfortunately, the precision of the density estimates in [3] was very low,

which could have precluded detection of a difference. In addition, processing efficiency was

not estimated, and densities were extremely low (2–35 oysters m-2), such that the results are

not necessarily applicable to the much higher densities on restoration oyster reefs [7, 8]. If

hydraulic tongs are in fact more efficient than mechanical tongs, it is likely due to the greater

weight of the device and, more importantly, its closure under power which allows it to actively

dig into the reef substrate. The mechanically-operated patent tong is likely less than 100% effi-

cient due to its lighter weight and unpowered retrieval of the sample as the tong is raised.

Although we observed that the mechanical tong digs into the substrate during retrieval, it relies

only on the weight of the device to do so.

An important element of our study was inclusion of processing efficiency to estimate survey

efficiency separately from gear efficiency on the first grab, which no other study has done to

our knowledge. Processing can affect survey efficiency either positively or negatively. In our

case, processing positively raised survey efficiency from 76% (gear alone) to 81% (gear + pro-

cessing), supporting hypothesis 4. This was likely due to our preferential selection of the mid-

dle half of the sample, which maintained its structural integrity better and appeared to dig

deeper into the reef structure when compared to the ends of the grab. For oyster surveys that

use a mechanically operated patent tong, we suggest the gear efficiency rate is 76% for the full

first grab, but if the middle half of the sample is selected for further assessment, the efficiency

rate is 81%. In both cases, only a single grab per sample point is necessary. The r2 was higher

(0.92) for gear than for survey (0.79) efficiency, indicating that assessing the full sample will

likely produce a more accurate density estimate and a smaller standard error. However, the

survey samples, which are half the volume of the gear samples, require much less lab space and

processing time to assess.

Gear and survey efficiency did not differ significantly between high- and low-relief reefs,

causing us to reject hypothesis 2. The reefs we sampled were much younger than those sam-

pled in the era of Winslow (1882), three to five years, instead of centuries, old. They may sim-

ply not hold enough generations of oysters fixed together into a cohesive structure that would

negatively influence the efficiency of the patent tong. The more contracted size-frequency dis-

tributions on modern reefs due to disease and harvesting may also be easier to sample when

compared to historic reefs [18, 28–32] that held more age classes with larger adults, as well as

greater cohesion and rugosity. It may take many generations of oysters on an unfished sanctu-

ary reef to produce a truly cohesive reef similar to unexploited reefs found in the Winslow era.

Oyster density could also be a factor. Reefs examined in the Chai et al. (1992) study held very

low numbers of oysters (2, 18 and 35 m-2 on their three reefs), so most of the reefs in that study

consisted of empty shell. Catchability was likely higher for the few adult oysters present, as

they were not part of a cohesive structure but simply sat on top of loose shell, which was easily

grabbed by a patent tong of either design. Small spat on loose shells may be easier to miss in

such samples, especially if counting is done in the field under less-than-ideal weather condi-

tions. If any difference in efficiency between high- and low-relief reefs had been identified in

our study, it would likely have been due to differences in the population demographics, as well

as rugosity and cohesiveness between reef types [7, 15, 31–36] but this was not observed on

these young (constructed in 2004) reefs. If left undisturbed as sanctuaries over a multi-decadal

timeframe, it is probable that such differences will be noted.
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Regarding our rejection of hypothesis 3, larvae preferentially settle on shells of live adults

[37] embedded in the reef, so most spat are fixed to either a live adult oyster or a large oyster

shell near an adult so it is not unexpected that the catchability of spat is similar to that of the

adults. We found that poor weather in the field (reefs are typically sampled in the winter,

where temperatures often drop below 5˚C) does tend to result in less care taken processing a

sample. In a sample with over 1,000 oysters, including many spat less than 5 mm shell length,

counting in the lab compared to counting in the field ensures accuracy. Catchability between

age classes was examined using an oyster dredge [15] who also found no significant difference

between size classes. This is often the case for other gear-based molluscan fisheries, such as

that for the European surf clam Spisula solida [38] and Venus clam Anomalocardia brasiliana
[39], where the fishing gear, in both cases a metal-toothed dredge, was not size selective via the

frame of the dredge. It is expected that the frame of the metal-toothed patent tong is similar.

When the mollusk is motile, unlike oysters, size selectivity can occur, but this can be due to,

such as in the case of young (< 100 mm) sea scallops (Placopecten magellanicus), to the ability

of juveniles to swim above the dredge, unlike larger adults [40].

We developed the survey method as a cost and space-savings measure, as only half the sam-

ple required transport back to the lab, storage, and processing. Our study demonstrated that

the mechanically-operated patent tong is not 100% efficient in catchabilty on its first grab at

76%, which can be increased by our survey method of only taking the middle half of the sample

to 81%. A disadvantage of the survey method vs the gear method, where the entire sample is

assessed, is a small sacrifice in model fit as the r2 is slightly higher (0.92 compared to 0.79). If

time, funding, lab space and personnel permit, assessing the full sample will provide a better fit

to the data, though the survey method still provides a very good data fit. Our method using the

metal guide allowed for multiple grabs within the same sample point which allowed us to

obtain all the live oysters in a particular sample area. While this level of accuracy is desirable,

the time in the field was excessive, as we could typically obtain only 2 samples per day as care-

fully guiding the tong into the exact spot using the ROV and metal guide was a tedious process

on a boat, even anchored, in moving tidal waters with wave activity. We recommend taking

only one grab per sample site and using the appropriate efficiency rate. This also has the bene-

fit of reducing the damage to the reef by sampling, which is not insignificant and should be

minimized to the fullest extent practicable. Regarding this damage due to sampling, this is one

of the reasons we selected the patent tong over the dredge, in addition to the inaccuracy of the

dredge. Dredges, which are scraped over wide areas of a reef, significantly damage oysters and

reef structure along the entire transect, which can measure over 100 m in length, destroying

any cohesion, knocking clusters over and killing oysters by either hitting and damaging their

shells or altering their position on the reef such that they cannot feed or breathe. Scuba and

tonging damage a reef much less, only leaving discrete small pits on the reef surface, approxi-

mately 1 m2 (or less) in size. While much less damaging than a dredge, this still impacts the

reef as such pits are likely to fill with sediment unless the oysters can quickly recover and

achieve vertical growth within the depression.

Financial costs should also be considered. From our experience, a pair of divers and associ-

ated boat and fuel expenses were approximately US$1,000 per day, while expenses for a patent

tong boat and fuel were approximately US$500 per day. Divers are best in waters< 2 m deep,

as a tong boat cannot effectively navigate in less than 1.5 m deep water. Tongs are more effec-

tive in deeper waters, able to retrieve more samples per unit time than divers and making them

even more cost-effective in this situation. We recommend divers in shallow waters and to sam-

ple alternative material reefs, but recommend patent tongs in deeper waters on shell or small

stone (3–12 cm diameter) reefs.
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Possible limitations of the mechanical tong as a survey method could be lower efficiency at

low (< 25 oysters m-2) densities, as it is likely easier to miss small numbers of oysters on poor

quality reefs with no cohesion or clusters, both of which provide a greater chance of being

grabbed by the device due to greater size and rugosity. It is also possible that cohesive, very

high density reefs may be more difficult to sample with lower efficiency. While we suspected

this might be the case for the high-relief reefs due to their greater densities and cohesiveness,

this did not prove to be the case. On natural, unexploited reefs with even higher densities than

found on the high-relief reefs in the present study, however, we suspect efficiency will decline

due to difficulty in penetrating the reef. Another limitation of the device is the inability to sam-

ple bioengineered reef constructed out of alternative materials, such as reef balls and other

shaped objects, where divers or ROV must still be used.
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